
Dr. Syed Asim Jalal
Department of Computer Science

University of Peshawar

Data Structures and Algorithm Analysis

7

Stack Implementation Using Linked List

 We can avoid the size limitation of a stack
implemented with an array by using a linked list to
hold the stack elements.

 We, however, need to decide where to insert
elements in the list and where to remove them so
that push and pop will run the fastest.

 For example, should we insert and remove at Tail
or Head of the list.

 The question is at which end of the Linked List should we
implement Push and Pop operation. Front or End of a Linked
List.
– We Should use singly linked list to implement Stack,

as Stack do not need to traverse in any direction. So
doubly linked list is not an option as it needs more
memory.

– In singly-linked list, Insertion of a node in the start
takes constant time.

– Removing element at the end would involve first
traversing till the one node before the end. So
removing from start is efficient compared to the End.

– Removing an element at the start is also constant time
operation.

3

 It makes sense to use singly List for Stack
implementation and use Start of the linked
list for Push and Pop operations as both
adding a new node and removing a node
would take constant time and less memory.

4

Stack
Implementation
using
Linked List

5

Stack using Linked List
 Push Operation algorithm

1. Input Data
2. Create a new Node pointed by nNode
3. nNode value = Data
4. nNode next = Head
5. Head = nNode

7

 POP Operation

If (Head == Null)
Print Stack Under Flow
Exit

Get data from the head node. d = headdata
temp= Head
Head = Head next
Free temp

 Impementing IsEmpty()

 If (Head == Null)
– Return True

9

Stack Implementation
Mathematical Expression Evaluation

10

Application of Stack:
Processing Mathematical Expressions

11

Application of Stack: Mathematical
Expressions

 Processing Prefix, Infix and Postfix mathematical
expressions

 Suppose we want to add A and B. We have three
possible representations.
– A+B: Infix notation
– AB+: Postfix notation
– +AB: Prefix notation

 The prefixes, Pre, In and Post refers to the
position of operator

Need for Postfix and Prefix notations
 We normally use infix notations, but it has some problems.

In Infix operator comes between two operands

 While evaluating infix notation we have priorities of
operators. We can increase priorities by using parenthesis.
Infix notations are easy for humans as they can see entire
expression at once.

While computer can read only ONE symbol at a
time and cannot observe if there are
parenthesis or any higher order operators in the
expression ahead.

 Computer, therefore, cannot process Infix
expressions like Humans. 13

 Consider A + B * C
– We here know that multiplication should be done

before addition but computer can not figure out if
it only reads one character or symbol at a time

 A + (B * C)

We therefore came up with Prefix and Postfix
notations.

 In Prefix and Postfix notations we do not care
about priorities and brackets or parenthesis.

 Conversion to postfix
– A + (B * C) infix form
– A + (B C *) convert multiplication
– A (B C *) + convert addition
– A B C * + postfix form

Conversion to postfix
– (A + B) * C infix form
– (A B +) * C convert addition
– (A B +) C * convert multiplication
– A B + C * postfix form
–

15

Infix to Postfix Examples

The up-sided arrow represent power operator,
AB

Infix to Postfix Examples

The up-sided arrow represent power operator,
AB

 Role of stack

 Stack is used both in the
– conversion of Infix to Postfix as well as in
– evaluating Infix notations after conversion.

18

Evaluating Postfix using Stack

 Each operator in a postfix expression refers to
the previous two operands.

 Each time we read an operand, we PUSH it on
a stack.

When we reach an operator, we POP the two
operands from the top of the stack, apply the
operator and PUSH the result back on the
stack.

19

Evaluating Postfix Algorithms

Evaluate 6 2 3 + - 3 8 2 / + * 2 ↑ 3 +
Input op1 op2 value stack

6 6
2 6,2
3 6,2,3
+ 2 3 5 6,5
- 6 5 1 1
3 6 5 1 1,3
8 6 5 1 1,3,8
2 6 5 1 1,3,8,2
/ 8 2 4 1,3,4
+ 3 4 7 1,7
* 1 7 7 7
2 1 7 7 7,2
↑ 7 2 49 49
3 7 2 49 49,3
+ 49 3 52 52

21

Converting Infix to Postfix

22

Converting Infix to Postfix
 Consider the following infix expressions ‘A+B*C’ and ‘ (A+B)*C’.

 The postfix versions are ‘ABC*+’ and ‘AB+C*’.

 The order of operands in postfix is the same as the infix.

 In scanning from left to right, the operand ‘A’ can be inserted into postfix
expression.

 The ‘+’ cannot be inserted until its second operand has been scanned and
inserted.

 The ‘+’ has to be stored away until its proper position is found.

 When ‘B’ is seen, it is immediately inserted into the postfix expression.

 Can the ‘+’ be inserted now? In the case of ‘A+B*C’? No because *
has precedence over +

 In case of ‘(A+B)*C’, the closing parenthesis
indicates that ‘+’ must be performed first.

 So the algorithm needs a procedure to
determine precedence of operators

– Lets assume we have a function
‘precedence(op1,op2)’ where op1 and op2 are two
operators.

– ‘precedence(op1,op2)’
• returns TRUE if op1 has precedence over op2,
• otherwise FALSE is returned.

24

 precedence(‘*’,’+’) returns TRUE

 precedence(‘+’,’+’) returns TRUE

 precedence(‘+’,’*’) returns FALSE

– Based on this precedence function we will make
an algorithm that converts infix expression to its
postfix form.

– First we will consider infix expression without any
parenthesis.

1. Stack s;
2. While(not end of input)
3. {
4. c = next input character;
5. if(c is an operand)
6. add c to postfix string;
7. else
8. { while(!s.empty() AND precedence(s.top(), c)==TRUE)
9. {
10. op = s.pop();
11. add op to the postfix string;
12. }
13. s.push(c);
14. } }
15. while(!s.empty()) {
16. op = s.pop();
17. add op to postfix string;
18. }

Converting Infix to Postfix Algorithm
For infix expression without parenthesis.

Pop and insert all the operators
in the postfix expression

27

Algorithm when parenthesis are involved

 We will modify the precedence function to include
parenthesis as well.

 When an open parenthesis ‘(‘ is read, it must be
pushed on the stack.

– This is done by setting precedence(operator,‘(‘) to be
FALSE.

 Push an operator (any one) on top of stack if the top
of stack is ‘(‘.

– This is done by making precedence(‘(‘, operator) to be
FALSE

When a ‘)’ is read, all operators up to the first ‘(‘
must be popped and placed in the postfix string.
– To do this, precedence(operator,’)’) returns

TRUE.
– Both the ‘(‘ and the ‘)’ must be discarded:

29

Summary of new rules for Parenthesis rules for (and)

 precedence(operator,‘(‘) = FALSE

 precedence(‘(‘, operator) = FALSE

 precedence(operator , ’)’) = TRUE

30

Stack s;
While(not end of input)
{

c = next input character;
if(c is an operand)

add c to postfix string;
else {

while(NOT s.empty() AND precedence(s.top() , c))
{

op = s.pop();
add op to the postfix string;

}
if(s.empty() OR c != ‘)’)

s.push(c); //push all operators except ‘)’
else

s.pop(); // discard ‘(‘ from stack.
}

}
while(!s.empty()) { // pop all remaining operators

op = s.pop();
add op to postfix string;

}

precedence(operator,‘(‘) = FALSE
precedence(‘(‘, operator) = FALSE
precedence(operator,’)’) = TRUE

31

Assumption for these algorithms is the
postfix notations are correct and
correctly converted from infix to postfix.

32

 Example: (A + B) * C

33

Another Algorithm for self study.

35

	Slide Number 1
	Stack Implementation Using Linked List
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Stack using Linked List
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Application of Stack: �Processing Mathematical Expressions
	Application of Stack: Mathematical Expressions
	Need for Postfix and Prefix notations
	Slide Number 14
	Slide Number 15
	Infix to Postfix Examples
	Infix to Postfix Examples
	Slide Number 18
	Evaluating Postfix using Stack
	Evaluating Postfix Algorithms
	Evaluate 6 2 3 + - 3 8 2 / + * 2 3 +
	Converting Infix to Postfix
	Converting Infix to Postfix
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Algorithm when parenthesis are involved
	Slide Number 29
	Summary of new rules for Parenthesis rules for (and)
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Another Algorithm for self study.
	Slide Number 35

